

Louise E Niggemeyer RN, MEd Trauma Program Manager Department of Trauma Surgery The Alfred

Circa 1930

Circa 2003

Overview

- Technology
- Nursing
- Trauma System

And you thought your job sucked

Clinical Microdialysis

Blood capillary

Clinical Microdialysis

First described in 1974

The 1987 Rx Parkinson's

What is microdialysis?

Continuous tissue chemistry monitoring

 Alerts tissue chemistry changes <u>before</u> clinical changes become evident

Titrate interventions

- don't have to wait for lab results

Clinical Applications

- Where continous monitoring is required
 - neurotrauma
 - shock
 - sepsis
 - invassive monitoring
 - Operative procedures
 - Early chemical markers of ischemia can be detected by using microdialysis
 - monitoring of myocutaneous grafts

The Principle of Microdialysis

Types

Brain

Adipose tissue

Subcutaneous microdialysis

Position of the catheter in the adipose tissue

Analytes: Glucose Lactate Pyruvate Glycerol Glutamate Urea

Catheter locations

Lou Lou rating

- Ease of insertion
 OK
- Intellectual work
 High
- Number crunching quolent
 - High

Brain Tissue Oxygen - LICOX

Traumatic Brain Injury

To optimize cerebral blood flow, that is in & out of the head: Prevent Hypotension Prevent Hypoxia Prevent Hypoventialtion

See

Tells you how the injured cells are travelling CBF) & demand (cerebral metabolism)

Catheter

- Pre-calibrated, stable
- Single, double, or triple
 lumen bolt
- Tunneled

Values

- The 30 20 15 10 5 Rule
- Normal > 30 mmHg (25 50 mmHg)
- Ischemia reported at ranges of less than 8 - 12 mmHg (10)
- Critical PbtO₂ = 5 8 mmHg

Influences on Oxygen

- Systemic factors of major influence on pbtO2
 - ABP, ICP, paO2, paCO2, pH, temperature
 - Blood Hgb content, viscosity and Hct
 - Medications

ICP / CPP management

ICP may be normal but $pbtO_2 \checkmark$

■ CPP may be at OK but pbtO₂ ↓

ICP / CPP management

pbtO2

CPP at times will need to be much higher than imagined

Hyperventilation management

PaCO₂ lowers ICP but also ↓pbtO₂

■ PaCO₂ results in vasoconstriction & VCBF therefore VO₂

Hyperoxia

- Normal tissue ↑FiO₂ has little effect on PbtO₂
 - Injured brain ↑FiO₂ results in an ↑ PbtO₂ (if blood flow present)

Lou Lou rating

- Ease of insertion

 same as ICP

 Intellectual work

 high
- Number crunching quolent
 - high
 - Benefit
 - HIGH

Nursing driven intervention

Best Practice Grant for TBI

Decompressive Craniectomy

Intensive Neuromonitoring
 – Latrobe University nursing research

Trauma - high-risk

Virchow's triad

- hypercoagulability
- endothelial damage
- venous status
- Contraindications to prophylaxis
 - TBI
 - haemorrhage

Premorbid Risk ...

Age

- 40-60 years relative risk x 2
- 61-75y x 3
- >75y x 4
- Obesity x 2
- malignancy x 3
- abnormal coagulation x 2
- history of thrombosis / thromboembolism x 3

Iatrogenic Risk ...

- femoral vein lines x 2
- transfusion > 4units x 2
- operation > 2hrs x 2
 - major venous repair x 3

Injury-related risk

- Twice the risk
 - severe chest injury AIS > 2
 - severe abdomen AIS > 2
 - severe head AIS > 2 / GCS 8 or less
 - Three times
 - spinal #
 - Four times
 - cord injuries
 - severe lower limb #
 - pelvic #
 - multiple system injuries 2x 4x

Sixth ACCP Consensus Conference Antithrombotic Therapy, Greenfield et al J.Trauma 1997:42, Agreement 8/4/02 Neurosurgery Intensive Care, The Alfred 8/4/02
Incidence & "high-risk times"

Velmahos et al 2000, J Trauma 49:132-8
 – DVT 11.8%
 – PE 1.5%

O'Malley et al, 1990, J Trauma 30:748-50
 2 - 3 % & most < 1 week

DVT prophylaxis...

Prevention of Thromboembolic Complications in Injured Patients

The Alfred experience with retievable IVC filters

July 1 2002 - March 30 2003

21 pts

- M 14 : F 7
- Av age 45.5 yrs (16-82)
- Av ISS 27.3 (9-59)

Risk factors (Mean 2.5 per pt)

- Long bone # 17
- Prolonged sedation 15
- Spine # +/- cord injury 10
- Pelvic #
- Hx of DVT

10 1

Deployment of IVC filter

Venous approach

- 16 R femoral
- -3 L femoral
- -2 R internal jugular

Av time to insertion

-77.8 hours (22-288)

20 / 21

- 1 failed at another hospital (day 20)

Retrieved

- day 1 - 191 days (av 36.4 days)

No complications – No PE

In summary

Nurses role

- remind
- administer
- monitor

Nursing

Nurses....

The greatest pt interface

- Monitoring
- Interventions

The Trauma Nurse Leader

Why?

- High volume
- High acuity
- High staff turn over
- High number of junior staff

What

- Command & control
- Operational
 - Including patient disposition
- Orientation
- Continuing professional development
 - research
 - education
 - QA
 - clinical service delivery

Operational controller

- Dedicated 4 trauma bay, Trauma Centre
- Helipad
 - >1000 trauma callouts annually
 - frequently > 1 trauma call

Operational controller

- Coordinating movement of pts through trauma centre
- Appropriate resource utilisation / allocation
- Liaison with OR, Blood Bank, Radiology

Specific responsibilities

- Acts as Team
 Leader for helipad
 Response Team
 - conducts safety checks
 - identifies hazzards
 - compliance
 - Crash
 - scene controller until MFB arrives

Selection Criteria

- Critical Care qualified
- Extensive ED experience
- Leaders
- Communication skills
- Make the team work

Ongoing requirements

Annual certification

- helipad
 - hot unloads
- ACLS
- Continuing professional development

Lou Lou rating

- Appropriate role recognition
- Career path
- Develops trauma nursing
- Exciting

Victorian Trauma Foundation

Nursing

Travelling scholarships

Research & best practice

Victorian Clinical Nursing Consortium

- ED
- Ward
- OR

Trauma Systems Save Lives

 Matching health resources with patient needs

Victoria - leader in road safety

1970 - World first

- mandatory 3 point restraint front & rear seat passengers in cars
- 1974 Australian first
 - random breath testing
- 1980's Australian first
 - speed cameras & red-light cameras
- 1990 Australian first
 - compulsory bicycle helmets

Victorian Response to a 30% Avoidable Mortality

If you have an accident you should be treated in the best setting

Goals of the VSTS

 To deliver the right patient to the right hospital in the shortest amount of time

To best match state resources with patient needs' ensuring the delivery of optimal care

The goal of the Victorian Trauma System

The central message of the ROTES report is:

"The right patient to the right hospital in the shortest time"

International research has demonstrated that the outcome of major trauma patients is **improved** when they receive **definitive** treatment at a **Major Trauma Service**

Transfer Appropriateness Payment

> 10 transfers	Transfers	\$\$\$
Metropolitan	66	\$132,000.00
Regional	50	\$150,000.00
Total @\$2000	256	\$512,000.00

82% of major trauma cases are treated in a MTS (VSTR, 01-02 annual report) from 49% 2001 (Aug 2001 DHS, Vic)

Major Trauma Advice & Referral Line ~ 1800 700 001

Regardless of the transfer or destination

For time critical cases

An <u>immediate</u> Vital Link with the MTS

1800 700 001 Trauma Advice & Referral Line

The future.....

No Rodor's such afficults a deside was first for dealers or and one to remain fir man appendix area.

So Barber on parties solder

Balack provide a walk variety of annow readings. Each has a classified dense which makes the specified areas a family freedow, and areas manifested deploy.

The primer binded on generate a faceto field scenario field. A faculture for other to applied to the same to become the patient.

Emergency Medical Hologram

"Please state the nature of the medical emergency...."

What would I like to see...

Best matching of needs with resources

Non-invassive monitoring

Drug to treat TBI

Levitation device !!!

Additional Slides....

Temperature regulation

1°C = 6.7% change in metabolism Brain temperature > 0.5 - 1°C > core & jugular, > 0.3 - 1.9°C > bladder, > 0.1- 2 °C > rectal Deep white matter 0.5 - 1°C > cortical Injured brain temperature 1 - 4°C > core Greater difference with temperatures >38°C Kurth, Anesth, 2000

N. N. P. M. LEL

Brain temperature is dependent on

- Rate of local CBF
- Level of arterial temperature
- Age? Skull & scalp density

Effect of alterations in CBF

CBF 50 - 20 ml/100Gm - bra temperature>rectal & core
CBF < 20 ml/100Gm

brain temperature decreases .5-.9°C/hr

Rumana et al

1998

Local brain oxygen levels, may not reflect what is happening in surrounding tissues

