

Robin Mitchell
Adult Emergency Department
Auckland City Hospital

Impact of advanced prehospital care in severe head injury

- 104 Consecutive patients treated over 50 months
- Blunt traumatic brain injury
- Protocol
 - Intubation/Cric if GCS 8 or less
 - "Hyperventilated"
 - Mannitol
 - Diazepam & Phenytoin
- 128 controls oesophageal obturator

- Similar demographics as regards age, sex, GCS and site of injury
- Probability of survival (TRISS) lower in aeromedical group
- Mortality
- Time to hospital
 - Land 23min
 - Aeromedical 57min

	Aeromedical	Land
Probability of survival	0.62	0.75
Mortality	32/104 31%	51/128 40%
Glasgow Outcome Score	44%	36%

Helicopter services in trauma – addition of a physician

- NRMA Careflight (Medic) to Westmead/Nepean
 - 28 months
 - ISS ≥ 10
 - Transported directly from scene
- Westpac (Paramedic) to John Hunter
- Pre-hospital case sheets for RTS
- TRISS observed and predicted mortality

	Paramedic team $(n = 140)$	Physician team $(n = 67)$	Significance level
Number of patients who received > 50 mL intravenous fluids	104	53	P = 0.45
Median volume of fluid (mL) infused in patients who received > 50 mL (range)	825	2500	P < 0.001
	(100-4500)	$(200-14\ 380)$	
Median volume of fluid (mL) infused in patients with initial hypotension* (range)	1475	5035	P < 0.001
	(0-4500)	(1000-14 380)	
Number of patients intubated	14	34†	P < 0.001
Proportion of patients with Glasgow Coma Score < 9 intubated	14/36	23/23	P < 0.001
Thoracic decompressions	2 (both needle)	8 (6 tube, 2 needle)	P < 0.01

	Paramedic team $(n = 140)$	Physician team $(n = 67)$	Significance level
Number of patients who received > 50 mL intravenous fluids	104	53	P = 0.45
Median volume of fluid (mL) infused in patients who received > 50 mL (range)	825	2500	P < 0.001
700 (2001) ST 2001 And 1996-2007	(100-4500)	$(200-14\ 380)$	
Median volume of fluid (mL) infused in patients with initial hypotension* (range)	1475	5035	P < 0.001
	(0-4500)	(1000-14380)	
Number of patients intubated	14	34†	P < 0.001
Proportion of patients with Glasgow Coma Score < 9 intubated	14/36	23/23	P < 0.001
Thoracic decompressions	2 (both needle)	8 (6 tube, 2 needle)	P < 0.01
Pa	aramedic team	Physician team	Significance

	Paramedic team $(n = 140)$	Physician team $(n = 67)$	Significance level
Median RTS (range)	7.55 (0.58–7.84)	6.90 (0.00-7.84)	P = 0.21
Median GCS (range)	14 (3–15)	13 (3-15)	P = 0.05
Median ISS (range)	18 (10–66)	25 (10-59)	P = 0.05
Outcomes by TRISS methodology			
Predicted to die and died	16	5	
Predicted to die and lived	4	9	
Predicted to live and died	_ 11	5	
Predicted deaths	23	16	
Observed deaths	27	10	

Garner, A et al. Aust NZJ Surg 1999;69:697-701

London HEMS effect on survival after trauma

- 2 year period
- All missions attended by HEMS
- 20 primary receiving hospitals within London
- Compared to paramedic care during daylight hours
- Excluded death at scene if no intervention
- Sample stratified to increase power (include only 1 in 3 from Royal London)

	HEMS (n=337)	Paramedics (n=466)
RTC	159 (47.5%)	253 (54.3%)
Fall	62 (18.5%)	64 (13.7%)
Male	242 (71.8%)	334 (71.7%)
0-64yr	277 (82.6%)	380 (82.2%)
=/>65yr	58 (17.4%)	82 (17.8%)
Major trauma (ISS>15)	140 (42.7%)	131 (28.4%)
Severe Injury (ISS≥25)	83 (26.9%)	51 (16.6%)
GCS ≤9	103 (32.5%)	65 (18.6%)

Mortality

- 92/337 (27.3%) in HEMS
- 77/466 (16.5%) in Paramedic
- With ISS≥ 16 there was little difference
- Severe head injury similar outcome
- More minor injuries suggested a poorer outcome (but unscored compounding)

Multivariate analysis

- 17.2% more in helicopter group
- 0.5% in ambulance cohort

- Arrival at hospital 10-20min later
- 6 min on scene

Swiss Model

- 6 year observational cohort study of one trauma centre in eastern Switzerland
- Lack of protocol
- Helicopter or road based with EP deployed with severe injuries
- Compared with EMT +/-Paramedic +/- anaesthetic nurse
- ASCOT score to compare observed and predicted mortality

Table 2 Comparison of Actual and Predicted Mortality

Withou		ut Emergency Physic	mergency Physician (n • 71)		With Emergency Physician (n • 196)	
Deaths	No.	p Value ¹	Mortality (%)	No.	p Value ¹	Mortality (%)
Actual	10	0.066	10/71 (14.1)	22	0.734	22/196 (11.2)
Predicted	6.6			23.3		
(95 CI)	(3-10.2)		6.6/71 (9.3)	(16.1-30.5)		23.3/196 (11.9)

Italian Model

- 1 year trauma registry from northeastern Italy
- EMS Nurse-led supported by BLS
- HEMS Anaesthetist and 2 nurses
 Target Syst BP 90 or 110
 - Severe head injury (AIS >3) with major trauma
- Included Daylight hours and rural setting
- Outside protocol, tasked elsewhere
- Physician-led ground ambulance excluded

Overall Mortality

- 28/92 (30%) in HEMS
- 22/92 (24%) in EMS
- OR 1.39 (0.72 to 2.67)

Table 3. Outcome of Patients and Comparison After Exclusion of Falls as Mechanism of Injury*				
	Group A (n = 74)	Group B (n = 88)	95% CI of the Difference Between Groups	
Trauma deaths, No. (%)	23 (31)	20 (23)	0.76 to 3.09 (OR, 1.533)	
GOS, mean (median)	4.1 (5)†	4.0 (5)‡	0.0 to 0.0§	

 No difference for subgroups age, ISS, GCS or hypotensive on scene

- Medic dispatched with probable severe compromise
- Either helicopter or car (Anaesthetist)
- 2 year period compared with historical controls
- In addition looked at ISS
 - ≥ **27**

	HEMS	Control
All		
Patients	81	77
Died	25 (31)	14 (18)
In the emergency department	11	0
In the OR or ICU	10	10
Later	4	4
ISS r 26		
Patients	37	35
Died	3 (8)	1 (3)
In the emergency department	1	0
In the OR or ICU	2	1
Later	0	0
ISS > 26		
Patients	44	42
Died	22 (50)	13 (31)
In the emergency department	10	0
In the OR or ICU	8	9
Later	4	4

Meta-analysis of ALS in trauma

- We KNOW it works!!?
- ALS principles in prehospital care established
- Very heterogeneous
- Average amounts of fluid administered are small
- Endotracheal intubation
- Various medication administered

Libermann et al. J Trauma 2000;49:584-599

<u>Issues</u>

- Randomised trial
 - Unethical
 - Resource and infrastructure
- Cohort studies to compare often use different centres and systems
- Role of Trauma Facility in mortality

International Comparison

- 5 countries with ALS
- 4 countries with Doc-ALS

Included

- 15-55yr
- ISS>15
- Direct transport to trauma centre

- Demographics
- ISS, GCS, Syst BP
- Times and interventions

Outcome

- ED Shock rate (<90mmHg)
- Early fatality (during the first 24hr)

Demographics similar

- Shock at scene 17%-27%
- ISS 24-32

Table 3 Adjusted^a odds ratios of ED shock and early trauma fatality rate, comparing Doc-ALS with ALS EMS system (baseline group) for different levels of injury severity and SBP at scene and at ED

-	OR of ED shock ^b		OR of early trauma fatality ^a	
	ISS > 15	ISS > 25	ISS > 15	ISS > 25
All patients, regardless of their SBP at scene or at ED	1.18 (0.73–1.92)	1.00 (0.72-1.39)	0.70 (0.54-0.91)	0.57 (0.42-0.77)
Patients with detectable SBP at scene	1.09 (0.82-1.43)	1.00 (0.71-1.41)	0.64 (0.49-0.85)	0.55 (0.40-0.75)
Patients with detectable SBP at ED	1.03 (0.76–1.46)	1.00 (0.68–1.45)	0.61 (0.46-0.80)	0.53 (0.39-0.73)

^a Adjusted for age, sex, type and mechanism of injury, injury severity score and SBP at scene.

^b Comparing Doc-ALS EMS system to ALS (reference group).

Conclusion

- Evolution of prehospital care
- Balance of evidence
- Difficulty of good structured studies
- Comparitive studies
- Extract elements from cohort studies

Introduction

- Evolution of Prehospital care
- Emotive Issues
- Experience in different centres
 - Head Injury
 - Polytrauma
- Comparison with ALS studies
- International comparison

 Advanced prehospital care origins in mobile CCU

- 4 Patterns seen:
 - No organised system
 - Basic Life Support
 - Advanced Life Support
 - Physician-led

- Extensive training
- Understanding of physiology/pathophysiolog
 y
- Practical skills
 - Advanced Airway Care
 - Chest Thoracocentesis
- Drugs and equipment
- Critical Decision Making skills rather than SOP

- Communication skills
- Understand local centres
- Increased number of personnel