Does the intra-osseous needle have a role in trauma?

Tony Smith
Medical Director, St John, New Zealand
Intensive Care Medicine Specialist, Auckland City Hospital
Resurgence recently

Related Articles for PubMed (Select 17454802) - PubMed Results - Microsoft Internet Explorer provided by Auckland District Health

Display: Summary
Show: 20
Sort By:
Send to:

Items 1 - 20 of 175

1. Frearson RT, Jensen JP, Kaye K, Sallahin JT.
 Consecutive field trials using two different intraosseous devices.
 PMID: 17454802 [PubMed - indexed for MEDLINE]

2. Suyama J, Knutson CC, Notthington WR, Hahn M, Hostler D.
 IO versus IV access while wearing personal protective equipment in a HazMat scenario.
 PMID: 17907033 [PubMed - indexed for MEDLINE]

3. Collings MD, Fitzgerald G, Bentley TB, Parrish D.
 Intraosseous infusion devices: a comparison for potential use in special operations.
 PMID: 10866233 [PubMed - indexed for MEDLINE]

 Comparison of two intraosseous infusion systems for adult emergency medical use.
 PMID: 18373590 [PubMed - as supplied by publisher]

 Intraosseous infusion: success of a standardized regional training program for prehospital advanced life support providers.
 PMID: 8273939 [PubMed - indexed for MEDLINE]

Comparison of two intraosseous infusion systems for adult emergency medical use.

Department of Anaesthesiology and Emergency Medicine, University of Heidelberg, D-69120 Heidelberg, Germany.

INTRODUCTION: The current guidelines of the European Resuscitation Council (ERC) stipulate that an intraosseous access should be placed if establishing a peripheral venous access for cardiopulmonary resuscitation (CPR) would involve delays. The aim of this study was therefore to compare a manual intraosseous infusion technique (MAN-IO) and a semi-automatic intraosseous infusion system (EZ-IO) using adult human cadavers as a model. MATERIALS AND METHODS: After receiving verbal instruction and giving their written informed consent, the participants of the study were randomized into two groups (group I: MAN-IO, and group II: EZ-IO). In addition to the demographic data, the following were evaluated: (1) Number of attempts required to successfully place the infusion, (2) Insertion time, (3) Occurrence of technical complications and (4) User friendliness. RESULTS: Evaluation protocols from 84 study participants could be evaluated (MAN-IO: n=39 vs. EZ-IO: n=45). No significant differences were seen in the study participants' characteristics. Insertion times (MW+/S.D.) of the respective successful attempts were comparable (MAN-IO: 33+/28s vs. EZ-IO: 32+/11s). When using the EZ-IO, the access was successfully established significantly more often on the first attempt (MAN-IO: 79.5% vs. EZ-IO: 97.8%; p<0.01). The EZ-IO was also found to have more advantages in terms of technical complications (MAN-IO: 15.4% vs. EZ-IO: 0.0%; p<0.01) and user friendliness (school grading system: MAN-IO: 1.9+/0.7 vs. EZ-IO: 1.2+/0.4; p<0.01). CONCLUSIONS: In an adult human cadaver model, the semi-automatic system was proven to be more effective. The EZ-IO gave more successful results, was associated with fewer technical complications, and is user friendlier.
The literature

Consecutive field trials using two different intraosseous devices.

Frascone RJ, Jensen JP, Kaye K, Salzman JG.

Regions Hospital Emergency Medical Services, Regions Hospital, St. Paul, MN 55101, USA.

OBJECTIVE: Establishing traditional intravenous (IV) access in adult trauma and medical patients can be difficult. We evaluated provider performance for obtaining intraosseous access with two FDA-approved intraosseous devices (F.A.S.T.1 and EZ-I0) in two sequential field trials. METHODS: One hundred twenty-four providers consented to participate in the first field trial evaluating the use of the F.A.S.T.1 system. Three hundred eighty-nine providers consented to participate in the second field trial, evaluating the use of the EZ-I0. Following each insertion attempt, a telephone data collection process with a member of the research team was completed. Insertion success rate and measures of provider comfort and satisfaction with each device were collected and analyzed. RESULTS: One hundred seventy-eight insertions (89 F.A.S.T.1; 89 EZ-I0) were completed between February 2000 and December 2005. Sixty-four of the 89 insertions of the F.A.S.T.1 were successful, and 78 of the 89 insertions of the EZ-I0 were successful (72% vs. 87%; chi^2 = 6.8; p = 0.009). Providers using the F.A.S.T.1 attempted more IV insertions prior to the IO device than the providers using the EZ-I0 (2.6 vs. 2.0, p = 0.005). There were no differences in provider comfort or provider assessed device performance between the two devices (p = 0.52; p = 0.13, respectively). CONCLUSION: In our comparison of two field trials of prehospital provider use of the F.A.S.T.1 and EZ-I0 systems, more successful insertions with the EZ-I0 were achieved than with the F.A.S.T.1 device. Limitations of our comparison include nonrandomization, the sequential field trial design, the potential for a learning effect, and self-reporting of data points by providers. A prospective, randomized evaluation of these devices is warranted to draw definitive conclusions about provider insertion success rate with these devices.

PMID: 17454802 [PubMed - indexed for MEDLINE]
The literature

Intra-osseous access (EZ-IO) for resuscitation: UK military combat experience.

Cooper BR, Mahoney PF, Hodgetts TJ, Mellor A.

212 Field Hospital RAMC(V).

Military trauma produces predominantly blast and fragmentation injury, commonly resulting in haemorrhagic shock. Injury patterns to limbs are such that the conventional sites for venous cannulation may be unsuitable. The EZ-IO (Vidacare, San Antonio) system is one of a number of novel products designed for intraosseous (IO) access in adults or children. In three months of combat casualty care in Helmand Province, Afghanistan, the UK Defence Medical Services used EZ-IO for emergency vascular access on 26 patients (16 adults; 10 children). 23/26 patients had IO access obtained in the emergency department; 3/26 had pre-hospital IO access within a tactically flying helicopter. A total of 32 needles were inserted, with 97% effective function. IO needles were used to administer fluid (crystalloid, packed red cells and fresh frozen plasma) and drugs (analgesics, cardiac arrest drugs, antibiotics, drugs for both rapid sequence induction and maintenance of anaesthesia). No complication of infection was noted, but pain was observed in responsive patients with the pain of infusion exceeding that of the underlying injuries in 3 cases.

PMID: 18619171 [PubMed - in process]
A summary of the literature

- Not a systematic review
- Dominated by pre-hospital use
- Use in adults is increasing
 - Particularly in military setting
- Some randomised trials
 - Comparing ease of placement of one type vs another
 - In general powered devices appear easier and quicker
 - Differences are statistically significant but not always clinically significant
- No meaningful outcome data
ION in St John

- We used a manual screw in ION for many years
- Only used in children, tibial site only
 - Required child to be fairly moribund
 - Used relatively infrequently
 - Took time and force to place
 - Approximate 20% failure rate
 - Tendency to be easy to dislodge
ION in St John

- Moved away from the manual screw in device to a spring loaded device (bone injection gun or BIG)
 - Easier and quicker to insert, more stable in the bone
 - Able to be placed in ‘less moribund’ patients
 - We carried the paediatric size only
 - All or nothing (unable to be altered)
 - A much higher failure rate than expected
 - We decided to move back to the manual
ION in St John

- We have also looked at the FAST ION
 - Sternal access only
 - Adults only
 - All or nothing
 - Originally required a separate device for removal
- We decided against introducing it
ION in St John

- We then evaluated drill powered devices
 - Relatively expensive
 - Very quick, easy, relatively painless
 - Adults and children
 - Multiple sites
 - Can be altered (not all or nothing)

- We have chosen to introduce the EZ IO
Intra-osseous needle and trauma

- Gaining vascular access can be difficult in trauma
- Bone marrow is highly vascular
 - Fluids and medicines injected into marrow are rapidly absorbed
- Intra-osseous access just another form of vascular access
Absorption
How good are they really?

- Medicines are quickly absorbed
- Fluids require pressure
 - 1 litre crystalloid in 10-15 minutes
 - 1 bag blood in 15-20 minutes
 - This will be very sore if the patient is awake
But do they have a role in trauma?

- Will not replace large bore veinous access
- Bridge to large bore veinous access when this cannot be achieved
 - Can be a quick and easy access port for medicines
- Case example
 - RTC, Truck vs van, van driver trapped
 - A and B OK, tachycardic and constricted, GCS 9 (M5), agitated
 - Trapped by legs, multiple compound limb fractures
 - Several attempts at IV access in one available limb
 - ION placed in humerus
 - RSI using ketamine, midazolam and suxamethonium
 - Fluid via ION during extrication
 - Large bore access gained via EJV once extricated
Summary

- The newer ION mean that IO access can be gained in both adults and children
 - Quickly and easily
 - In patients who are not moribund
 - In multiple potential sites
 - Ability to administer medicines and fluids

- Not a panacea
 - Another option for vascular access

- Will not replace large bore veinous access
 - They may be a bridge to it
Intra-osseous needle (ION) and trauma

- Discuss the history of ION
- Briefly summarise the literature
- Discuss the evolution of ION within our own service
- Discuss why we are moving to a powered drill device
- Discuss the potential role of the ION in trauma
- Present a case
- Questions and discussion
History

- ION have long been used as an alternative to veinous access
- Common in the 1930s and 1940s
- Originally in both adults and children
- Became less common in adults over time
- Resurgence recently