Intravenous fluids – is less better or not in trauma?

Colin A Graham
Professor, Emergency Medicine
Chinese University of Hong Kong

August 2010
Objectives

- Why do we give IV fluids at all?
- Are IV fluids useful in themselves?
- What about blood and blood products?
- What is the evidence for and against IV fluid administration in trauma?
- Putting it all together
Why do we give IV fluids at all?

- We don’t like low blood pressures
- We prefer to see normal heart rates
- We need to replace the blood loss
- We have to do something to make the patient better, don’t we?
Why do we give IV fluids at all?

- We really give them as we know that blood loss causes shock
- Shock causes circulatory failure, gut, renal and neurological damage and organ failure
- Poor management of shock leads to death
Data

• Burris et al, J Trauma 1999
 – Rats with standardised aortic trauma
 – Variable fluid resuscitation
• Rats with no fluids all died soon
• Rats with lots of fluid (MAP 100mmHg) had a higher mortality than rats with controlled blood pressure (MAP 80)
• More rebleeding when MAP increased
CAUTIONS:" DO NOT USE UNLESS THE REACTION OCCURS.
LEAKS BY SQUEEZING BAG.
THOROUGHLY AVOID CONTACT WITH THE SKIN.
ADDITIVES MAY BE INCOMPATIBLE.
CONTAINER (PORTS UPWARDS)
0.80 mm NEEDLE SUGGESTED.
STORAGE BELOW 30°C.
Are IV fluids useful in themselves?

- IV fluids increase the intravascular volume and pressure and flow.

- They restore some perfusion to regional vascular beds that have shut down due to hypovolaemia or other forms of shock (e.g. obstructive), reducing cellular hypoxia.
Benefits of IV fluids

• Available universally, long before blood

• Can sustain flow to tissues when shock reaches critical levels beyond which death will rapidly occur

• Cheap and non-allergenic (crystalloids)
Any drawbacks to IV fluids?

- The patient has usually lost blood, with cells and coagulation factors, not saline.
- Saline can only replace saline, not cells.
- Blood that is lost is usually at 37°C, saline is normally given back at 20-25°C.
Any drawbacks to IV fluids?

- IV fluids are easy to store and quick to use
 - Very tempting in prehospital care and the ED

- Stay in intravascular space for short time

- If used alone, need large volumes of crystalloid for effective resuscitation
Any drawbacks to IV fluids?

- Large volume infusions of crystalloid can cause gut oedema, abdominal hypertension and abdominal compartment syndrome.

- Large volumes of fluid can ‘pop the clot’ from major blood vessels and cause further (unseen) bleeding.
What about blood and blood products?

• Blood has cells and coagulation factors

• Older blood has less of both, and even less functioning cells and active clotting factors

• Blood needs to be collected, screened, typed, stored in a fridge and crossmatched
What about blood and blood products?

- Blood administration seems more logical than IV fluids alone.
- Blood administration can cause transfusion reactions and blood borne disease.
- Usually available as packed red cells and component therapy in civilian practice.
Prehospital IV cannulae?

- No evidence to support placement of IV cannulae at scene
 - Simply delays departure for definitive care

- Evidence that cannulation can be done en route without delays – this is acceptable
Evidence for IV fluid administration in trauma

- Almost none for prehospital administration

- Very little high quality evidence in favour of IV fluid administration in the ED

- Fluid administration *may be justified* if there is a pressing need to intubate the patient
Evidence against IV fluid administration in trauma

- Bickell et al NEJM 1994
 - Prospective single centre pseudo-RCT
 - Penetrating torso injuries only
 - No fluid for one group, standard IV fluid resuscitation for the other
 - Preoperative fluid volumes were 386mL in the ‘no volume’ group and 2611mL in the ‘normal’ group
 - Better survival in the ‘no fluid’ group (p=0.04)
So we should stop fluids?

- Several caveats about this study:
 - 65% gunshot wounds
 - 30% stab wounds
 - Not your average trauma population......

- This study specifically examined penetrating truncal trauma, not blunt trauma
Blunt trauma

Very different pathology

- Blunt trauma – multiple bleeding points, usually 1 or 2 major bleeding regions which need control, lots of oozing and contusion

- Penetrating trauma – usually 1 major bleeding region which needs to be stopped
Head injury

- Most patients with blunt trauma have significant head injuries
 - Priority is to avoid hypoxia and hypotension
 - Hypotension causes a decreased cerebral perfusion pressure and cerebral ischaemia
 - A single episode of hypotension increases mortality dramatically
 - Cerebral autoregulation is impaired after trauma
Putting it all together
Putting it all together

- Penetrating trauma is ‘easy’
 - Avoid IV cannulation at scene
 - Avoid IV fluids en route and in the ED
 - Shock needs surgery to stop bleeding
 - Fluids should be restricted as much as possible before definitive haemostasis occurs in the operating room – *hypotensive resuscitation*
 - Early surgical control of bleeding is the key
Putting it all together

• Blunt trauma with conscious patient and evidence of shock and/or bleeding
 – Avoid IV cannulation at scene, rapid ED transfer
 – IV cannulation en route if possible but avoid IV fluids in transit and in the ED as long as conscious level remains acceptable – hypotensive resuscitation
 – Identify and stop surgical bleeding as quickly as possible
 – Fluids should be restricted as much as possible
Putting it all together

- Blunt trauma with head injury and reduced conscious level (GCS<13) and shock (SBP<90mmHg)
 - Avoid IV cannulation at scene, rapid ED transfer
 - Cannulate in transit and given a 250mL bolus of IV crystalloid (0.9% saline or Ringer’s lactate) to keep systolic at ~90mmHg – not higher unless signs of raised ICP (prehospital or ED)
 - Repeat bolus as necessary to maintain SBP ~90mmHg, not higher
 - On arrival at ED, locate and stop surgical bleeding rapidly
Putting it all together

- Blunt trauma with head injury and reduced conscious level (GCS<13) and shock (SBP<90mmHg)
 - Give blood as early as possible if further fluids are required, and consider FFP and platelets early
 - Fluids should be restricted as much as possible before definitive haemostasis occurs in the operating room
 - Try to maintain a balance between excessive bleeding in the truck and decreased cerebral perfusion pressure causing further cerebral ischaemia
 - Early surgical control of bleeding and avoidance of overinfusion of crystalloids are the keys
What if someone is about to die (systolic BP ~ 40mmHg)?

• No data to inform us in this scenario

• Seems logical to give some fluid to maintain a chance of survival

• Reality is that unless injury to a single system is present which is rapidly ‘fixable’, outcomes are generally appalling
Summary

- IV fluid administration is a good thing
 - The question is the timing and volume

- Avoid large volumes of IV fluids before stopping bleeding in penetrating injury and in neurologically intact blunt trauma

- Hypotensive resuscitation depends on having a perfused brain, nothing more
Summary

• If you cannot assess the brain ‘minute-by-minute’, then do not embark on hypotensive resuscitation – give repeated 250mL boluses until haemostasis is achieved.

• Surgical control of bleeding is far more important that fluid replacement – This should be the goal of every trauma system.