Intra-osseous drills: the ups and downs of a new device

Tony Smith

Medical Director, St John, New Zealand
Intensive Care Medicine Specialist, Auckland City Hospital

Intra-osseous needle and trauma

- Gaining vascular access can be difficult in trauma
 - Patients may be hypovolaemic and vasoconstricted
 - Not all limbs and sites may be suitable for access

Intra-osseous needle and trauma

Bone marrow remains 'wide open' despite hypovolaemia

Fluids and medicines are rapidly absorbed from marrow

Almost as rapidly as intravenous administration

Intra-osseous access just another form of vascular access

Significant interest in the role of intra-osseous access in

trauma

Intra-osseous needle (ION) and trauma

- Discuss the history of ION
- Briefly summarise the literature
- Discuss the evolution of ION within our own service
- Discuss why we have moved to a powered drill device
- Discuss the potential role of the ION in trauma
- Present a few cases
- Questions and discussion

Conflict of interest

- I do not have a financial interest in any of the products
 - I wish I did
- I have not received money from any of the companies
 - I have gratefully received coffee
 - I have gratefully received training

History

- ION have long been used as an alternative to veinous access
- Common in the 1930s and 1940s
- Originally in both adults and children
- Became less common in adults over time
- Resurgence recently

Resurgence recently

The literature

The literature

The literature

A summary of the literature

- Not a systematic review
- Dominated by pre-hospital use
- Use in adults is increasing
 - Particularly in military setting
- Some randomised trials
 - Comparing ease of placement of one type vs another
 - In general powered devices appear easier and quicker
 - Differences are statistically significant but not always clinically significant
- No meaningful outcome data

- We used a manual screw in ION for many years
- Only used in children, tibial site only
 - Required child to be fairly moribund
 - Used relatively infrequently
 - Took time and force to place
 - Approximate 30% failure rate
 - Tendency to be easy to dislodge

- Moved away from the manual screw in device to a spring loaded device (bone injection gun or BIG)
 - Easier and quicker to insert, more stable in the bone
 - Able to be placed in 'less moribund' patients
 - We carried the paediatric size only
 - All or nothing (unable to be altered)
 - A much higher failure rate than expected
 - We decided to move back to the manual

- We have also looked at the FAST ION
 - Sternal access only
 - Adults only
 - All or nothing
 - Originally required a separate device for removal
- We decided against introducing it

- We then evaluated drill powered devices
 - Relatively expensive
 - Very quick, easy, relatively painless
 - Adults and children
 - Multiple sites
 - Can be altered (not all or nothing)
- We have chosen to introduce the the EZ IO

Absorption

How good are they really?

- Medicines and fluids are very quickly absorbed
- Large volumes of fluid require pressure
 - 1 litre crystalloid or one bag of blood crystalloid in 10-15 minutes
 - This may be sore if the patient is awake
 - 1% lignocaine IO for pain

10 drill in St John

- Advanced paramedics (ALS)
- Two sites
 - Anterior tibial (adults and children)
 - Humeral head (adults only)
- Immediate requirement for time critical medicine or fluid and IV access cannot be obtained
- Contraindicated if:
 - Fracture of that bone
 - Known (or strongly suspected) metal in that bone
 - Soft tissue infection at that site

10 drill in St John

Procedure

- Identify site
- Swab with iodine or alcohol and chlorhexidine
- Drill until loss of resistance (usually into hilt)
- Remove stylet
- Aspirate for bone marrow
- Secure (not crucial immediately)
- Flush (important for flow)
- Administer fluid and medicines
- Discourage use in cardiac arrest

10 drill in St John

What we have learned

- Awake patients tolerate it remarkably well
- Not all patients experience pain with fluid under pressure
- There is an initial level of enthusiasm which then settles down
- They are remarkably stable
- We may need to carry a longer needle
- Don't replace large bore veinous access
- Bridge to large bore veinous access when this cannot be achieved quickly

Case example – trauma

- RTC, Truck vs van, van driver trapped
 - A and B OK, tachycardic and constricted, GCS 9 (M5), agitated
 - Trapped by legs, multiple compound limb fractures
 - Several attempts at IV access in one available limb
 - ION placed in humerus
 - Volume loaded via ION during extrication
 - GCS fell to 7 (M5)
 - Intubated and ventilated using RSI via ION following extrication
 - Large bore access gained via EJV

Case example – bleeding

Woman in her fifties

- Elective hysterectomy
- Heparinised post operatively for prosthetic mitral valve
- Code red for hypotension (clinically bleeding)
- Restless and agitated, pulled peripheral IVs out
- Taken rapidly to OR
- No IV access could be obtained
- Borrowed ION drill from paediatric ED
- ION placed in anterior tibia
- 5 units of blood via ION
- Anaesthetised via ION
- Large bore IV access gained in IJ
- Laparotomy and repair of bleeding vessels

Summary

- The IO drill means that IO access can be gained in both adults and children
 - Quickly and easily
 - In patients who are not moribund
 - In multiple potential sites
 - Ability to rapidly administer medicines and fluids, rapidly absorbed
- Not a panacea
 - Another option for vascular access when it is difficult
- Do not replace large bore veinous access
 - They are a bridge to it
- In my view they definitely have a role