DVT Prophylaxis In Critically Ill and Trauma

Peter T. Clark
FACEM, FJFICM, FANZCA

Intensive Care Units Westmead Hospital & Westmead Private Hospital
Careflight Medical Retrieval Service
Deputy Director NSW Medical Retrieval Unit
Director NSW Institute Trauma & Injury Management
Why is it Important

High prevalence of VTE
- Most hospitalised patients have risk factors
- DVT is common in many patient groups
- Hospital acquired DVT and PE are usually clinically silent.
- Difficult to predict
- Screening is usually ineffective
Why is it important?

- Adverse consequences of VTE
 - Fatal Pulmonary Embolus
 - Costs of investigating and treating symptomatic patients
 - Increased future risk of recurrent VTE
 - Chronic post thrombotic syndrome
Risk Factors in ICU

<table>
<thead>
<tr>
<th>Baseline Factors</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trauma</td>
<td>4.6 (0.6 – 38.3)</td>
</tr>
<tr>
<td>Past VTE</td>
<td>4.6 (0.9 – 29.4)</td>
</tr>
<tr>
<td>Cancer</td>
<td>3.7 (0.7 – 18.8)</td>
</tr>
<tr>
<td>Immobilisation</td>
<td>2.1 (0.1 – 4.9)</td>
</tr>
</tbody>
</table>
Absolute risk of DVT

<table>
<thead>
<tr>
<th>Patient Group</th>
<th>DVT Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Patients</td>
<td>10-20%</td>
</tr>
<tr>
<td>General Surgery</td>
<td>15-40%</td>
</tr>
<tr>
<td>Major Gynaec Surgery</td>
<td>15-40%</td>
</tr>
<tr>
<td>Major Uro Surgery</td>
<td>15-40%</td>
</tr>
<tr>
<td>Neurosurgery</td>
<td>15-40%</td>
</tr>
<tr>
<td>Stroke</td>
<td>20-50%</td>
</tr>
<tr>
<td>Hip or Knee Arthroplasty</td>
<td>40-60%</td>
</tr>
<tr>
<td>Major Trauma</td>
<td>40-80%</td>
</tr>
<tr>
<td>Spinal Cord Injury</td>
<td>60-80%</td>
</tr>
<tr>
<td>Critical Care Patients</td>
<td>10-80%</td>
</tr>
</tbody>
</table>
Risk factors and OR for VTE among Trauma patients

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age >40 years</td>
<td>2.29 (2.07-2.55)</td>
</tr>
<tr>
<td>Pelvic Fracture</td>
<td>2.93 (2.01-4.27)</td>
</tr>
<tr>
<td>Lower extremity fracture</td>
<td>3.16 (2.85-3.51)</td>
</tr>
<tr>
<td>Spinal cord injury + paralysis</td>
<td>3.39 (2.41-4.77)</td>
</tr>
<tr>
<td>Head Injury AIS>3</td>
<td>2.59 (2.31-2.90)</td>
</tr>
<tr>
<td>Ventilator days>3</td>
<td>10.62 (9.32-12.11)</td>
</tr>
<tr>
<td>Venous injury</td>
<td>7.93 (5.83-10.78)</td>
</tr>
<tr>
<td>Shock @admission</td>
<td>1.95 (1.62-2.34)</td>
</tr>
<tr>
<td>Major surgical procedure</td>
<td>4.32 (3.91-4.77)</td>
</tr>
</tbody>
</table>
Why is it important?

- Efficacy and Effectiveness of Thromboprophylaxis
 - Highly efficacious in preventing DVT
 - DVT prevention prevents VTE
 - Prophylaxis is cost-effective
- Prophylaxis often omitted
What are the options?

- Mechanical Devices
 - Elastic stockings
 - Compression devices – Pneumatic (IPD), Sequential pneumatic (SCD), Foot Pumps

- Chemical Prophylaxis
 - Heparins
 - Oral anticoagulants???
 - Newer agents?
What are the options?

- Currently available data is unequivocally in favour of Heparin - LDUH or LMWH.
- No evidence for aspirin or other platelet agents
- Some evidence for mechanical devices, especially as adjuncts
Mechanical Devices
RCT of Stockings + Pneumatic Compression in Neurosurgery

- Unblinded RCT of 239 neurosurgery patients
- DVT rates diagnosed by IPG/legscan/venogram lower when patients received stockings + pneumatic compression than no prophylaxis
- Bleeding: none
- PE: none

Turpie et al, Arch Intern Med 1989
Effects of compression methods of thromboprophylaxis on DVT

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of trials with data</th>
<th>Compression</th>
<th>Control</th>
<th>O–E</th>
<th>Variance</th>
<th>OR and CI compression: control</th>
<th>% OR (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression (monotherapy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCS</td>
<td>9</td>
<td>57/665 (8.6%)</td>
<td>133/267 (21.2%)</td>
<td>-39.7</td>
<td>37.2</td>
<td>66% (10)</td>
<td></td>
</tr>
<tr>
<td>IPC</td>
<td>19</td>
<td>112/1,108 (10.1%)</td>
<td>268/1,147 (23.4%)</td>
<td>-76.3</td>
<td>71</td>
<td>66% (7)</td>
<td></td>
</tr>
<tr>
<td>Foot pump</td>
<td>2</td>
<td>11/61 (18%)</td>
<td>34/65 (52.3%)</td>
<td>-10.7</td>
<td>7.3</td>
<td>77% (19) (2 p < 0.00001)</td>
<td></td>
</tr>
</tbody>
</table>

IPC = intermittent pneumatic compression; GCS = graduated compression stockings.

Chemical DVT Prophylaxis

- Vitamin K antagonists
 - Warfarin

- Antithrombin agonists
 - Unfractionated heparin
 - Low molecular weight heparin

- “Factor Xa” inhibitors*
 - Fondaparinux

- Direct thrombin antagonists
 - Hirudin, argatroban, ximelagran, etc.

- Anti-platelet agents
 - Aspirin, dipyrimadole, clopidogrel, etc.
Heparin Mechanisms

- Anti thrombin activation
 - Occurs when the penta-saccharide chain randomly distributed along the UH or LMWH chain binds to anti thrombin.
 - Anti thrombin then under goes a conformational change that accelerates interaction between anti thrombin, factor Xa and thrombin.
Unfractionated Heparin

- Heterogenous polysaccharide chains
- MW 3,000-30,000 Daltons
- 1/3 dose contains penta-saccharide sequence
- Anti X a: anti II a ratio = 1:1
- Non-specific binding to macrophages, platelets, and endothelial cells makes anticoagulation difficult to predict
Low molecular weight heparin

- Derived from UH molecules
- MW 1000-10,000 daltons
- Penta-saccharide sequence present on roughly 15-25% of LMWH chains
- Predominant anti Xa antagonism
- Anti Xa: anti II a ratio 4:1-5:1
- Less binding to macrophages and endothelial cells - predictable, reliable, safe
Advantages of LMWH over UH

- Decreased "heparin resistance"
 - Pharmaco-kinetics of UH are influenced by its bindings to plasma protein, endothelial cell surfaces, macrophages, and other acute phase reactants
 - LMWH has decreased binding to non anticoagulant-related plasma proteins
Advantages of LMWH over UH

- No need for laboratory monitoring
 - when given on a weight-adjusted basis, the LMWH anticoagulant response is predictable and reproducible
- Higher bioavailability - 90% vs 30%
- Longer plasma half-life
 - 4 to 6 hours vs. 0.5 to 1 hour
 - Renal (slower) vs. Hepatic clearance
Advantages of LMWH over UH

- Less inhibition of platelet function
 - potentially less bleeding risk, but not shown in clinical use
- Lower incidence of thrombocytopenia and thrombosis (HIT syndrome)
 - less interaction with platelet factor 4
 - fewer heparin-dependent IgG antibodies
WHICH HEPARIN?
HOW MUCH?
HOW OFTEN?
Unfractionated Heparin

- Primary agent over many years.
- Data primarily from surgical patients
- 60-70% relative risk reduction in both DVT/PE
- Data supporting UH use in medical patients are more difficult to interpret.
Unfractionated heparin

- Earliest study 30 years back
- Patients with MI, HF and unspecified medical problems
- DVT rates 2.6% and 22.5% in Heparin and placebo groups.
- Similar results in a larger study in 192 patients older than 40 years with pulmonary disease
Low molecular weight heparins

- ENOXAPARIN
- DALTEPARIN
- FRAXIPARIN etc.
ENOXAPARIN

- First trial- 270 patients; 60mg s/c bd vs placebo
- Significant reduction of frequency of DVT
- More injection site hematomas.
- No clinically significant bleeding.
Enoxaparin in Medicine Study Group (EMSG)

- 5000 U UH q 12 h vs Enoxaparin 20 mg s/c bd in 442 elderly ICU patients

- No difference in DVT rates diagnosed by RFUT
Prophylaxis in Medical Patients with Enoxaparin (MEDENOX)

- Targets: Risk of VTE
- Safety and efficacy of 20mg vs. 40mg bd of Enoxaparin
- No difference in incidence of DVT/VTE between placebo and 20mg bd Enoxaparin
- 63% risk reduction with 40mg bd dose.
- Benefit maintained for 110 days.
- No major bleeding/thrombocytopenia.
- No data on 40mg bd Enoxaparin vs. UH
Thrombo-embolism prophylaxis in Internal Medicine with Enoxaparin (PRIME) Group

- Multi-center, double blind, RCT 885 pts-40mg bd Enoxaparin vs. 5000U UH q 8h.
- No statistical difference in incidence of VTE.
- No difference in major bleeding tendencies.
- Fewer injection site haematomas with Enoxaparin.
Thrombo-embolism prevention in cardiopulmonary diseases with Enoxaparin (PRINCE)

- Enoxaparin 40mg bd vs UH 5000 U q8h - 665 patients.
- No difference in DVT prevention rates
- More bleeding in UH group
- Better risk reduction with Enoxaparin in those with CHF.
Prospective Evaluation of Dalteparin Efficacy for Prevention of VTE in Immobilised patients (PREVENT)

- 3706, moderate risk hospitalised patients
 Dalteparin 5000 U vs. Placebo once daily for 14 days
- Assessed for DVT at 21 days
- 2.77% vs 4.96% in favour of Dalteparin
- 45% risk reduction with Dalteparin
- No data in exclusively ICU patients
RCT of UF Heparin vs LMWH in Trauma Patients

- Double-blind RCT of 344 trauma patients with ISS>9
- DVT rates proven by venography were lower in patients receiving LMWH than unfractionated heparin
- Bleeds: 5 with LMWH, 1 with unfractionated

Geerts et al, NEJM 1996
Prophylaxis recommendations in critically ill patients

<table>
<thead>
<tr>
<th>Bleeding risk</th>
<th>Thrombosis risk</th>
<th>Prophylaxis recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>MODERATE</td>
<td>LDUH 5000 U q 12h</td>
</tr>
<tr>
<td>LOW</td>
<td>HIGH</td>
<td>LMWH qd</td>
</tr>
<tr>
<td>HIGH</td>
<td>MODERATE</td>
<td>GCS or IPC→LDUH when bleeding risk decreases</td>
</tr>
<tr>
<td>HIGH</td>
<td>HIGH</td>
<td>GCS or IPC→LMWH when bleeding risk decreases</td>
</tr>
</tbody>
</table>
Principles of DVT prophylaxis in critically ill patients

- Daily review – change prn
- No interruption for Sx or procedures unless risk of bleeding is high.
- Routine screening for asymptomatic patients not recommended if prophylaxis has been adequate.
- Periodic audits.
DVT Prophylaxis - Recommendations

Prevention of Venous Thromboembolism: The Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy

William H. Geerts, Graham F. Pineo, John A. Heit, David Bergqvist, Michael R. Lassen, Clifford W. Colwell and Joel G. Ray

Chest 2004;126;338-400
DOI 10.1378/chest.126.3_suppl.338S

- Orthopaedic surgery sections of recommendations were formally reviewed by 16 external experts, 10 of whom were orthopaedic surgeons (including several well known orthopaedic traumatologists).
- Recommendations reviewed and supported by the AAOS.
5.1 Trauma

- All trauma patients receive thromboprophylaxis, if possible (Grade 1A).
- Unless contraindicated, use LMWH starting as soon as it is considered safe to do so (Grade 1A).
- Recommend against the use of vena cava filters as primary prophylaxis in trauma patients (Grade 1C).
- Recommend continuation of prophylaxis through the completion of inpatient rehab (Grade 1C+), and suggest continued prophylaxis after discharge with LMWH or VKA in patients with impaired mobility (Grade 2C).
Initial prophylaxis consideration

CRITICAL CARE ADMISSION

? BLEEDING RISK

HIGH
• Mechanical Prophylaxis.
• Delay prophylaxis till risk resolves
• Screen for proximal DVT with Doppler in high risk pts

USUAL
• LDUH
• LMWH
• Combined with mechanical prophylaxis
To summarize......

- All ICU & Trauma patients have a combination of risk factors for VTE.
- Balanced assessment and decision making crucial.
- LMWH preferred in those with multiple risk factors vs. risk bleeding
- Adherence to guidelines and regular audits needed for better results.
PROphylaxis for ThromboEmbolism in Critical Care Trial (PROTECT)

- Effect of LMWH vs. UH on primary outcome of DVT diagnosed by USG
- LMWH vs. UH on secondary outcomes of PE, HIT and Bleeding.
- Expected enrolment 3600
- Expected completion June 2009.
What’s new?
Synthetic oligo-saccharides

- Result of breakthrough in polysaccharide chemistry.
- Fondaparinux-selective inhibitor of factor Xa.
- Approved for use in orthopaedic surgery.
- Also found to be beneficial in ACS and in VTE.
- Efficacy at least as good as Enoxaparin; better safety profile.
Arixtra for Thromboembolism Prevention in a Medical Indications Study (ARTEMIS)

- 849 acutely ill medical patients bedridden for >4 days
- Multinational, double blind
- 2.5mg Fondparinux vs placebo once daily.
- Venography at 6 and 14 days
- 5.6 vs 10.6% with OR 49.5% for DVT
- No PTE in fondparinux group vs 1.2% in placebo group
- Similar bleeding rates
Properties of conventional anticoagulants

<table>
<thead>
<tr>
<th>Property</th>
<th>Vit.K antagonism</th>
<th>UH</th>
<th>LMWH</th>
<th>Fondaparinux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Synthetic</td>
<td>Animal</td>
<td>Animal</td>
<td>Synthetic</td>
</tr>
<tr>
<td>Structure</td>
<td>Homogenous</td>
<td>Heterogenous</td>
<td>Heterogenous</td>
<td>Homogenous</td>
</tr>
<tr>
<td>Target</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Single</td>
</tr>
<tr>
<td>Prot. binding</td>
<td>Albumin</td>
<td>AT III +pl.prot</td>
<td>AT III +pl.prot</td>
<td>AT III</td>
</tr>
<tr>
<td>Administration</td>
<td>Daily</td>
<td>Q 8h</td>
<td>Q12h</td>
<td>Daily</td>
</tr>
<tr>
<td>Monitor coagulation</td>
<td>Frequent</td>
<td>Frequent</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Interactions</td>
<td>Many</td>
<td>None known</td>
<td>None known</td>
<td>None known</td>
</tr>
<tr>
<td>HIT Ab cross reactivity</td>
<td>100%</td>
<td>80%</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>
Direct Thrombin Inhibitors (DTI)

- Parenteral
 - Hirudin
 - Bivalirudin
 - Argatroban
- Oral
 - Ximelagatran - studied in DVT
Effects of compression methods of thromboprophylaxis on DVT

<table>
<thead>
<tr>
<th>Category</th>
<th>Num. of trials with data</th>
<th>Compression</th>
<th>Control</th>
<th>O-E</th>
<th>Variance</th>
<th>OR and CI control</th>
<th>% OR (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression (monotherapy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCS</td>
<td>9</td>
<td>57/665 (8.6%)</td>
<td>133/267 (21.2%)</td>
<td>-39.7</td>
<td>37.2</td>
<td></td>
<td>66% (10)</td>
</tr>
<tr>
<td>IPC</td>
<td>19</td>
<td>112/1,108 (10.1%)</td>
<td>268/1,147 (23.4%)</td>
<td>-76.3</td>
<td>71</td>
<td></td>
<td>66% (7)</td>
</tr>
<tr>
<td>Foot pump</td>
<td>2</td>
<td>11/61 (18%)</td>
<td>34/65 (52.3%)</td>
<td>-10.7</td>
<td>7.3</td>
<td></td>
<td>77% (19)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180/1,834 (8.6%)</td>
<td>435/1,839 (23.7%)</td>
<td></td>
<td>115.5</td>
<td></td>
<td>67% (6)</td>
</tr>
</tbody>
</table>

- **CareFlight** logo on the left:
 - Pneumatic compression; compression stockings.

Effects of compression methods of thromboprophylaxis on PE

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of trials with data</th>
<th>Compression</th>
<th>Control</th>
<th>Stratified statistics</th>
<th>OR and CI compression: control</th>
<th>% OR (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PE</td>
<td></td>
<td>O–E Variance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compression (mono-therapy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCS</td>
<td>3</td>
<td>0/123 (0%)</td>
<td>4/90 (4.4%)</td>
<td>– 1.8 0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC</td>
<td>8</td>
<td>14/590 (2.4%)</td>
<td>18/618 (2.9%)</td>
<td>– 1.6 7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot pump</td>
<td>1</td>
<td>0/28 (0%)</td>
<td>0/32 (0%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>14/741 (1.9%)</td>
<td>22/740 (3%)</td>
<td>– 3.4 8.5</td>
<td>33% (28)</td>
</tr>
</tbody>
</table>

% OR (SE) = 33% (28)

2 p > 0.1; NS

Compression better Compression worse

Treatment effect 2 p = 0.006

DVT & Trauma – Risk Factors

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age \geq 40 y ($n = 178,851$)</td>
<td>2.29 (2.07–2.55)</td>
</tr>
<tr>
<td>Pelvic fracture ($n = 2707$)</td>
<td>2.93 (2.01–4.27)</td>
</tr>
<tr>
<td>Lower extremity fracture ($n = 63,508$)</td>
<td>3.16 (2.85–3.51)</td>
</tr>
<tr>
<td>Spinal cord injury with paralysis ($n = 2852$)</td>
<td>3.39 (2.41–4.77)</td>
</tr>
<tr>
<td>Head injury (AIS score ≥ 3) ($n = 52,197$)</td>
<td>2.59 (2.31–2.90)</td>
</tr>
<tr>
<td>Ventilator days > 3 ($n = 13,037$)</td>
<td>10.62 (9.32–12.11)</td>
</tr>
<tr>
<td>Venous injury ($n = 1450$)</td>
<td>7.93 (5.83–10.78)</td>
</tr>
<tr>
<td>Shock on admission (BP < 90 mm Hg) ($n = 18,510$)</td>
<td>1.95 (1.62–2.34)</td>
</tr>
<tr>
<td>Major surgical procedure ($n = 73,974$)</td>
<td>4.32 (3.91–4.77)</td>
</tr>
</tbody>
</table>

P < 0.001 for all factors.

AIS, Abbreviated Injury Scale; BP, blood pressure.

Published with permission [15••].
Why Is Prophylaxis Omitted?

- Lack of awareness
- Diversion of attention
- Concerns regarding safety of regimens
 - Neurosurgical – Brain, Spinal
- More daily injections
- Cost