## The Role of Endovascular Stenting in Extremity Trauma



Carl Muthu
Vascular and Transplant Surgeon
Auckland City Hospital

### **Extremity Arteries**

Not central vessels

 (e.g. aorta, iliacs) or
 head and neck vessels
 (carotids, vertebrals)

Not non-essential vessels e.
 é
 deep femoral, radial, ulnar,
 or tibial tibial arteries



#### **Stents**

- Not plastic tubes
- · Not "chicken wire" meshes
- Covered stents or stent grafts





# "Viabahn"









# "Atrium"







### **Stent Grafts**





### Trauma - latrogenic







### Potential Advantages of Stenting

- Low morbidity
- Rapid .....?????
- Less risk of collateral damage
   e.g. neurovascular injury, lymphatic complications, wound problems
- Less blood loss
- Easier??!!!

### **Limitations of Stenting**

- Facilities and Skills (e.g. "Hybrid" theatre)
- Haemodynamic instability
- Pattern of vessel injury –
   best for false aneurysms, AV fistulas, not disruptions or occlusions
- Branch vessel coverage
- Flexibility
- Need for concomitant open surgery

   e.g. fasciotomy, debridement, embolectomy
- Long term patency rates

#### Use of Stents in Trauma



- National Trauma Bank Review (US)
- 2.5 million patients of whom 45,000 underwent arterial repair
- Includes aortic and carotid injuries

#### Recent Case Series

- 16 cases of stent grafts for trauma (Sao Paulo, Brazil)
- From 312 arterial traumas (between 2006-20011)
- Only 6 "true traumas" rest iatrogenic
- All patients haemodynamically stable Artery Involved:
   Subclavian- axillary in 5, femoro-popliteal artery in 5, carotid artery in 3, iliac in 3
- No deaths or amputations
- 4 patients 9 (25%) occluded stent grafts during follow up (mean time 17.3 months)

but only 1 needed further revascularization surgery

### Subclavian Axillary Injury

- Has become the classic site to use endovascular stenting for arterial trauma
- Extremely difficult to expose surgically with high chance of iatrogenic neurovascular injury during emergency surgical exposure















#### Review of Literature

- "Endovascular management of axillosubclavian arterial injury: a review of published experience" Rasmussen et al Injury November 2012, 43:11; 1785-1792
- Reviewed all literature fromm 1990-2012
- 150 subclavian and 10 axillary artery injuries adequately described for 160 patients from 1996 to present

### Subclavian-Axillary Artery Injury

#### Injury Mechanism:

Penetrating trauma 56% Blunt trauma 21% Iatrogenic trauma 23%

#### Injury Pattern:

Pseudoaneurysm 48% AV fistula 17%, Occlusion 10%, Transection 5%, Peforation 14% Dissection 4%

Age range:10-93 years

### Subclavian-Axillary Artery Injury

- GA only used in 16% of cases
- Femoral access only 67%, Brachial access only 19%, 8 % combine access
- 155 patients stents successfully deployed 4 needed conversion to open, 1 balloon control
- 5 patients has access site related complications (all brachial)

### Subclavian Axillary Artery Injury

- One mortality (?not related to endovascular intervention)
- One neurological deficit
- 85% patency (variable follow up discharge to 70 months)
- Variable anticoagulation regimens
- 12 pts -> repeat endovascular intervention
- 1 pt -> delayed surgical bypass for stent occlusion
- Conclusion: Early results promising ...more study..

#### Conclusions

- There is an increasing role for stenting in extremity trauma
- Factors to consider: local facilities and expertise, haemodynamic stability, need for concomitant surgery, risk of collateral damage with surgical exposure, and the anatomic nature of the arterial injury
- Subclavian-axillary artery injuries are the best indication for stenting in extremity trauma