

Optimising Airway management for Trauma: comorbidity and difficult patients

T Hardcastle Trauma Surgeon Durban – South Africa

Disclaimer

- All images are from my own practice at either IALCH or previously Tygerberg hospital unless otherwise mentioned
- Opinions are not necessarily those of my employer, SA Department of Health

Overview

Airway is more than ET-tube or Surgical Crico

- Airway challenges in trauma
- The patient with comorbidities
- The obese patient
- RSI versus other drug assisted airway procedures
- Dealing with difficult laryngoscopy view
 - Tools, tips and tricks for the surgeon-intensivist
- Rescue devices
- Surgical airway options.

Epidemiology of Difficult Airway

- Average 2-5% of all emergency airways
 - Higher in trauma
 - Higher in comorbid group

Reasons for difficulty	No.	%
Anterior larynx	38	40.9
Neck immobility	22	23.7
Secretions and blood	14	15.1
Small mouth < 3 fingerbreadths	13	14.0
Obesity	10	10.8
Incomplete frontal dentition	8	8.6
Airway oedema	8	8.6
Oral obstruction (tumour, mechanical obstruction)	7	7.5
Maxillofacial trauma	4	4.3
Combativeness	2	2.2

Sakles JC, Laurin EG, Rantapaa AA, Panacek EA. Airway management in the emergency department: a one-year study of 610 tracheal intubations. Ann Emerg Med 1998; 31: 325–32 Nolan JP, Kelly FE. Airway challenges in critical care. Anaesthesia 2011; 66: 81–92

What constitutes a difficult airway?

- Problematic ventilation using a face mask
- Inability to deliver necessary tidal volume via face mask utilizing nasal or oral airway
- Incomplete laryngoscopic visualization
- Cormack and LeHane grade 3 or 4
- Difficult Intubation with standard airway equipment
- Requiring external laryngeal manipulation
- Greater than 3 attempts at intubation
- Requiring nonstandard equipment

Examples in Trauma

CAPE

LONI

BOOTS: - Difficult BMV

Beard – Obesity – Obstruction – Toothless - Stridor

Bad view - LEMON

- Local trauma: Look
- 3:3:1 Rule
- M-scores
- Obstruction
- Neck stiff

The combative patient

- Danger to self and staff
- Makes c-spine care more difficult
- Need to chemically sedate
 - Options include Haloperidol or Lorazepam
 - The proceed to RSI if the reason for the combative nature is TBI

The combative patient is hypoxic till proven otherwise

The patient with neck trauma

- Do not delay airway management for concern about about c-spine control
 - Manual Inline Spinal Motion Restriction is best
 - Remove the C-collar for manipulation
- These are difficult airways on the basis of "difficult laryngoscopy"

Direct laryngoscopy is usually still best

- Neck haematoma relative contra-indication to RSI – best to try awake intubation
 - Most can be orally intubated
 - Consider flexible scope

Airway injury

- Pitfall
- Mechanisms:
 - Penetrating: Direct airway injury
 - C-spine injuries very rare
 - Consider intubating past the injury or into the open airway wound
 - Blunt:
 - Direct blow to larynx / trachea
 - "Clothesline injury"
 - VERY careful intubation or awake tracheostomy
 - Cricothryroidotomy relative contraindication

Facial bone fractures

- Le Fort III type and mandible fractures
 - Posterior soft tissue displacement
 - Bleeding
- Difficult BMV often easy intubation
- Treat in position found
 - Awake sitting intubation
 - Sponge-forceps on tongue
 - Foley catheter tamponade

TBI

- Hypoxia and Hypotension kill
- Don't be fixated on GCS level
- RSI using cardiostable drugs is best
 - Ketamine and Etomidate equivalent
 - Both can suppress adrenal function
 - Suxcenycholine and Rocuronium equivalent
 - Avoid hyperventilation
 - Use routine ETCO2 monitoring

The obese patient

- Risk for difficult BMV
- Difficulty for tracheal intubation controversial
 - Position is everything
 - Obscured landmarks
- If also DM-type II
 - TM joint and neck joints stiffen due to glycosylation

- Physiological and pharmacological issues:
 - Reduced FRC
 - Reduced safe apnoeic time (50%)
 - Drug doses best based between IBW and TBW estimate

Keep dentures in for BMV and remove for laryngoscopy

Ramp up = neutral spine Bed = 30' Reverse Trendelenberg

Cardio-respiratory disease

- COPD is common, especially among smokers
 - Apnoeic time is reduced
 - Desaturate rapidly
 - Still need OXYGEN
 - NIV is a useful option if GCS 15/15
 - Allows sufficient exhalation to avoid stacking
- IHD

Use cardiostable agent – ketamine rel-C/I

"The canaries" – rare problems

- Congenital syndromes
 - -Common:
 - »Pierre Robin
 - »Beckwith-Weideman
 - »Cornelia de Lange
 - »Trisomies (esp. 21)
 - –Rare: many others <1:20 000</p>
- In general: Difficult laryngoscopy / intubation

Tools, Tips and Tricks

Have gadgets on the airway tray

- Vaseline
- Bougie
- Swab holding forceps

Think before you do

If in doubt – do not paralyse

Always have a backup plan

- LMA / LTA

Don't forget to have a scalpel handy

-Surgical airway is a viable option

What about tracheostomy?

- Severe facial fractures
- Severe head trauma
- Suspect prolonged ventilation

- Open technique if going to the OR or if risky features
- Percutaneous safe, but more long-term complications

Technique

Open technique: Recommend the "RCS" technique

- Transverse incision
- Divide muscles and split isthmus
- Cranio-caudal midline slit with holding sutures
- Tube placed under vision, skin not sutured

One Thousand Bedside Percutaneous Tracheostomies in the Surgical Intensive Care Unit: Time to Change the Gold Standard

Lucy Z Kornblith, MD, Clay Cothren Burlew, MD, FACS, Ernest E Moore, MD, FACS, James B Haenel, RRT, Jeffry L Kashuk, MD, FACS, Walter L Biffl, MD, FACS, Carlton C Barnett, MD, FACS, Jeffrey L Johnson, MD, FACS

CONCLUSIONS: BPT in the surgical intensive care unit is a safe procedure, even in high-risk patients. We believe BPT is the new gold standard for patients requiring tracheostomy for mechanical ventilation. (J Am Coll Surg 2011;212:163–170. © 2011 by the American College of Surgeons)

Longer-term airway issues

Early tracheostomy has benefits

- When performed around Day 3
- Decreased
 ventilator days and
 ICU stay

Timing of trachoostomy										
Design p			C	Results in early tracheostomy group						
	Patient population	Number of petients	Group/patient number	LOS	Hospital	Duration of MV	ртецтотів	Reterence		
Prospective randomized	Trauma	74	E = 3-4 (34) L = 14 (40)	N/A	N/A	N/A	++	[3]		
Prospective randomized	Trauma	106	E ≤ 7 (51) L > 7 (55)	Ļ		J	Ţ	[5]		
Retrospective observational	Trauma	101	E ≤ 4 (32) L > 4 (69)	N/A	N/A	4	Ļ	[8]		
Retrospective observational	Trauma	157	E ≤ 8 (82) L > 6 (95)	Ļ		N/A	4	[9]		
Retrospective observational	Тонити	31	E < 7 (21) L > 7 (10)	4	1	Ļ	N/A	[10]		
Prospective observational	Trauna	563	E < 7 (29) L => 7 (107)	Ļ	0	Ļ	N/A.	[20]		
Prospective observational	Irauma	62	E = 0.6 (81) L = > 6 (31)	N/A	N/A	1		[21]		
Prospective randomized multicenter	Trauma (199) Non-trauma (18)	167	E = 8-5 (127) L = 10-14 (28)	+	N/A	N/A	++	[82]		

Bench-to-bedside review: Early tracheostomy in critically ill trauma patients

Nehad Shirawi¹ and Yaseen Arabi²

¹Associate consultant, Intensive Care Department, King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia ²Consultant and Deputy Chairman, Intensive Care Department, Assistant Professor, King Abdulaziz Bin Saud University, King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia

Critical Care 2006, 10:201 (doi:10.1186/cc3828)

