

TENSION PNEUMOTHORAX AND NEEDLE DECOMPRESSION

K. Inaba, MD FRCSC FACS
Division of Trauma Surgery & Critical Care
LAC+USC Medical Center

DISCLOSURES

✓None

OBJECTIVES

- What is Tension Pneumothorax
- Treatment and Pitfalls
- New directions

OBJECTIVES

- ✓ What is Tension Pneumothorax
- ✓ Treatment and Pitfalls
- New directions

- √ Shortness of Breath
- √ Chest Pain
- ✓ Decreased A/E
- √ Low O₂ Saturation
- √ Hyper-resonance
- √ Tactile fremitus

- √ Shortness of Breath
- √ Chest Pain
- ✓ Decreased A/E
- ✓ Low O₂ Saturation
- √ Hyper-resonance
- √ Tactile fremitus

- √ Shortness of Breath
- √ Chest Pain
- ✓ Decreased A/E
- √ Low O₂ Saturation
- √ Hyper-resonance
- √ Tactile fremitus
- **✓ TACHYCARDIA**
- **✓ HYPOTENSION**

- √ Shortness of Breath
- √ Chest Pain
- ✓ Decreased A/E
- ✓ Low O₂ Saturation
- √ Hyper-resonance
- √ Tactile fremitus
- **✓ TACHYCARDIA**
- **✓ HYPOTENSION**

TENSION PTX

Pleural Air

Pleural Air Compresses lung

Pleural Air Compresses lung SIMPLE PNEUMOTHORAX

Air Increases

Air Increases Compresses Lung Even More

Air Increases Compresses Lung Even More Shifts Mediastinum

Functional Deformation + Impaired Venous Return Decreased CO

Functional Deformation H Impaired Venous Return TENSION PNEUMOTHORAX

- CARDIAC DEFORMATION
- **✓ DECREASED VENOUS RETURN**

OBJECTIVES

- What is Tension Pneumothorax
- ✓ Treatment and Pitfalls
- New directions

NEEDLE DECOMPRESSION

NEEDLE DECOMPRESSION

- Emergent procedure for decompression
- ✓ ATLS 2nd Intercostal space, Mid-clavicular line
- √ 5 cm catheter

Thoracic needle decompression for tension pneumothorax: clinical correlation with catheter length

2010

Chad G. Ball, MD*
Amy D. Wyrzykowski, MD*
Andrew W. Kirkpatrick, MD*
Christopher J. Dente, MD*
Jeffrey M. Nicholas, MD*
Jeffrey P. Salomone, MD*
Grace S. Rozycki, MD*
John B. Kortbeek, MD†
David V. Feliciano, MD*

- ✓ Retrospective, n=101
- ✓ 1.4% blunt patients needled
- **√3.2-4.5** cm catheters
- √ Assuming all had a Ptx
- √4-65% residual large Ptx

THE PROBLEM

OPHREAGOL

LOC: -71

THK: 3.0

A

WELL AWAY FROM PNEUMOTHORAX

Acq no: 3

Page: 8 of 215 P P

OBJECTIVES

- What is Tension Pneumothorax
- Treatment and Pitfalls
- New directions

DIFFERENT INSERTION SITE?

- 5th Intercostal space, anterior axillary line
- Potential benefits
 - √ Easily accessible supine
 - √Does not impact transport
 - √ Experience with CT insertion

NOT A NEW CONCEPT

Studies

- 1. CADAVERIC MODEL
- 2. CT BASED HUMAN EVALUATION
- 3. EMS EVALUATION

Studies

- 1. CADAVERIC MODEL
- 2. CT BASED HUMAN EVALUATION
- 3. EMS EVALUATION

Optimal Positioning for Emergent Needle Thoracostomy: A Cadaver-Based Study

Kenji Inaba, MD, FRCSC, FACS, Bernardino C. Branco, MD, Marc Eckstein, MD, David V. Shatz, MD, Matthew J. Martin, MD, Donald J. Green, MD, Thomas T. Noguchi, MD, and Demetrios Demetriades, MD, PhD

- ✓ Human cadavers
- √ Traditional 2nd v. 5th ICS
- √5cm standard catheter
- √80 needles into 20 cadavers
- ✓ Clamshell to assess penetration
- Chest wall thickness measured

Optimal Positioning for Emergent Needle Thoracostomy: A Cadaver-Based Study

Kenji Inaba, MD, FRCSC, FACS, Bernardino C. Branco, MD, Marc Eckstein, MD, David V. Shatz, MD, Matthew J. Martin, MD, Donald J. Green, MD, Thomas T. Noguchi, MD, and Demetrios Demetriades, MD, PhD

✓ CWT 3.5 v. 4.5cm (p<0.001)

Optimal Positioning for Emergent Needle Thoracostomy: A Cadaver-Based Study

Kenji Inaba, MD, FRCSC, FACS, Bernardino C. Branco, MD, Marc Eckstein, MD, David V. Shatz, MD, Matthew J. Martin, MD, Donald J. Green, MD, Thomas T. Noguchi, MD, and Demetrios Demetriades, MD, PhD

```
✓ CWT 3.5 v. 4.5cm (p<0.001)
</p>
```

- √2nd ICS 58%
- √5th ICS 100%

SUCCESSFUL PENETRATION

SUCCESSFUL PENETRATION

Cadaver Summary

- ✓ Chest thicker at 2nd v. 5th ICS
- Especially females
- ✓ 42% of 2nd ICS did not penetrate chest
- ✓ 100% at 5th ICS successful

Cadaver Summary

- ✓ Chest thicker at 2nd v. 5th ICS
- Especially females
- 42% of 2nd ICS did not penetrate chest
- ✓ 100% at 5th ICS successful

NO cardiac, lung, hilum, aorta, spleen or liver injury...

Studies

- 1. CADAVERIC MODEL
- 2. CT BASED LIVING HUMAN EVALUATION
- 3. EMS EVALUATION

ONLINE FIRST

Radiologic Evaluation of Alternative Sites for Needle Decompression of Tension Pneumothorax

Kenji Inaba, MD; Crystal Ives, BSc; Kelsey McClure, BA; Bernardino C. Branco, MD; Marc Eckstein, MD, MPH; David Shatz, MD; Matthew J. Martin, MD; Sravanthi Reddy, MD; Demetrios Demetriades, MD, PhD

2012

- ✓ Evaluate 2nd v 5th using Chest CTs of real patients
- ✓ Trauma >16yo undergoing Chest CT for trauma
- √30 random from each of 4 BMI quartiles

2nd ICS

Aims

- Chest Wall thickness at each position?
- Could a standard 5cm needle penetrate the chest?

CHEST WALL THICKNESS

SUMMARY

- Thickness of 2nd > 5th
- Both R and L
- Worse as BMI increases
- At 2nd, with eccentric placement, all but first quartile would fail
- At 5th, decompression possible in all but last quartile

Studies

- 1. CADAVERIC MODEL
- 2. CT BASED HUMAN EVALUATION
- 3. EMS EVALUATION

The right place in the right space? Awareness of site for needle thoracocentesis

E P Ferrie, N Collum, S McGovern

2005

- **✓25 EM physicians in Ireland**
- **√84% ATLS certified**
- ✓ Do they know where to Needle?
- ✓ Can they find it on a live model?

The right place in the right space? Awareness of site for needle thoracocentesis

E P Ferrie, N Collum, S McGovern

2005

- **√88%** named 2nd ICS MCL
- ✓Only 60% able to point out where this was on patient
- √4% pointed out 5th ICS AAL
- √8% wanted to needle abdomen below & lateral to xiphoid

EMS

- Ability of Navy corpsmen to place 2nd versus 5th needles
 - Accuracy
 - Time to decompression
 - Collateral damage

EMS

- √20 Corpsmen, 80 needles
- ✓25.5+/-3.9 years, 75% male
- \checkmark 4.4+/-3.3 years experience
- Half previous deployment

RESULTS

- ✓ Time to insertion
- Ease of localizing and inserting needle
- Accuracy

RESULTS

- ✓ Time to needle placement
 - 15.3s v 16.1s, p=0.438
- Ease of finding position
 - 75% rated 5th easier, 15% the same, 10% as harder

ACCURACY

- Accuracy within a 10cm circle
 - 95.0% v 27.5%, p<0.001
- Aggregate distance from correct position
 - 1.5+/-1.6 v 3.5+/-1.6cm, p<0.001

- ✓ Indications for needle decompression not well delineated
- ✓ If going to needle, know the following...

- ✓ Standard Angiocath <5cm
 </p>
- ✓ Chest wall 2nd ICS >5cm in 40-50%
- ✓ Most in upper ¾ of BMIs cannot be decompressed with standard needle

- ✓ In controlled experiments, 60% will fail entry
- ✓ R and L
- √ Females > Males
- ✓ Worse as BMI increases

- ✓ May not be in chest
- ✓ If not responding, try again with a different angle
- Especially for females or obese
- May consider alternate positions