Is prehospital mortality inevitable?

August 2018

Bridget Kool, Rebbecca Lilley, Brandon de Graaf, Gabrielle Davie,
Background

- ~1,800 people die from trauma annually in NZ
- ~$10 billion NZD (social and economic costs)
- ~65% of injury deaths in NZ occur prehospital
- Up to 45% could be survivable/potentially survivable
- Considerable variation in fatal injury rates by DHBs
- Timely presentation of critically injured patients to advanced hospital services is critical
Study aims & research questions

To identify opportunities for improving survival from serious injuries in the prehospital phase through the use of epidemiological and geospatial methods

1. What are the incidence and characteristics of prehospital injury deaths in NZ?

2. What proportion of prehospital injury deaths in NZ is survivable/potentially survivable?

3. What proportion of the NZ population have timely emergency access (land and air) to advanced level hospital care?

4. In the event of serious injury, how many survivable or potentially survivable prehospital injury deaths in NZ occur in geographic areas with/without timely access to advanced level hospital care?
Phase 1: Identifying the prehospital fatalities

Subjects with Underlying Cause of Death as ‘accident’ + date of death registration 2008-2012.
N=9430

Matched to NCIS held coronial case file
N=7108

Prehospital deaths
n=5791 (61% of total injury deaths)

Prehospital deaths eligible for survivability study
n=2612

Prehospital deaths able to be ISS scored
n=1796 (64%)
Injury Severity Score (ISS)

<table>
<thead>
<tr>
<th>Body Region</th>
<th>Injury</th>
<th>MAIS</th>
<th>AIS²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head/Neck</td>
<td>Compound # base of skull</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>SAH</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small focal cerebral haemorrhages</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pituitary injury</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Face</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorax/Chest</td>
<td>Contusions both lungs</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Grade V laceration spleen</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Abdomen</td>
<td>Compound # bilateral sacrolumbar joints</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple lacerations (2) sc., (2) hand + chin</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple abrasions (x) chest wall, (5) abdominal wall, (x) hiat.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extensive bruising (4) thigh + (1) skin</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Probabilities of survival:
- **Survivable:** ISS score <25
- **Potentially survivable:** ISS 25-49
- **Non-survivable:** ISS >49
Figure 1: Overall survivability, n= 1,796

- 11% survivable ISS <25
- 28% Potentially survivable ISS 25-49
- 61% Non-survivable ISS >50

- 39% survivable/potentially survivable (n=694) cf. 55% Falconer study
- ~ 139 lives per year
- Estimated societal costs $580m/year
Figure 2: Survivability by age group
Figure 4: Survivability by ethnicity

- Maori: Survivable ISS<25 (15%), Potentially survivable ISS 25 - 49 (30%), Non-survivable ISS > 49 (55%)
- Pacific Island: Survivable ISS<25 (5%), Potentially survivable ISS 25 - 49 (25%), Non-survivable ISS > 49 (70%)
- European: Survivable ISS<25 (10%), Potentially survivable ISS 25 - 49 (30%), Non-survivable ISS > 49 (60%)
- Asian: Survivable ISS<25 (15%), Potentially survivable ISS 25 - 49 (25%), Non-survivable ISS > 49 (60%)
- Other: Survivable ISS<25 (10%), Potentially survivable ISS 25 - 49 (20%), Non-survivable ISS > 49 (70%)

Legend:
- Survivable ISS<25
- Potentially survivable ISS 25 - 49
- Non-survivable ISS > 49
Mechanism of injury

<table>
<thead>
<tr>
<th></th>
<th>TOTAL (Column %)</th>
<th>Survivable ISS<25 (Row %)</th>
<th>Potentially survivable ISS 25 – 49 (Row %)</th>
<th>Non-survivable ISS > 49 (Row %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport related</td>
<td>1115 (62.1)</td>
<td>102 (9.2)</td>
<td>250 (22.4)</td>
<td>763 (68.4)</td>
</tr>
<tr>
<td>Motor Vehicle Traffic</td>
<td>950</td>
<td>85 (8.9)</td>
<td>205 (21.6)</td>
<td>660 (69.5)</td>
</tr>
<tr>
<td>Other Land Transport</td>
<td>54</td>
<td>7 (13.0)</td>
<td>21 (38.9)</td>
<td>26 (48.1)</td>
</tr>
<tr>
<td>Other Transport</td>
<td>71</td>
<td>4 (5.6)</td>
<td>10 (14.1)</td>
<td>57 (80.3)</td>
</tr>
<tr>
<td>Pedal Cyclist, other</td>
<td>14</td>
<td>2 (14.3)</td>
<td>6 (42.9)</td>
<td>6 (42.9)</td>
</tr>
<tr>
<td>Pedestrian, other</td>
<td>26</td>
<td>4 (15.4)</td>
<td>8 (30.8)</td>
<td>14 (53.8)</td>
</tr>
<tr>
<td>Firearm</td>
<td>187 (10.4)</td>
<td>2 (1.1)</td>
<td>98 (52.4)</td>
<td>87 (46.5)</td>
</tr>
<tr>
<td>Fall</td>
<td>157 (8.8)</td>
<td>21 (13.4)</td>
<td>53 (33.8)</td>
<td>83 (52.9)</td>
</tr>
<tr>
<td>Cut/Pierce</td>
<td>105 (5.9)</td>
<td>42 (40.0)</td>
<td>22 (21.0)</td>
<td>41 (39.0)</td>
</tr>
<tr>
<td>Other specified</td>
<td>209 (11.7)</td>
<td>23 (11.0)</td>
<td>65 (31.1)</td>
<td>121 (57.9)</td>
</tr>
<tr>
<td>Unspecified</td>
<td>19 (1.1)</td>
<td>3 (15.8)</td>
<td>11 (57.9)</td>
<td>5 (26.3)</td>
</tr>
</tbody>
</table>

Little variation by day of week or season
Figure 6: Survivability by distance from advanced level trauma care
Findings in relation to other studies

- 61% of injury deaths occurred prehospital, consistent with 59.5% of deaths in Florida study (Keris, 1986)
- 30% of RTC related deaths in this study were survivable/potentially survivable cf. 33% in an Australian study (Ryan, 2004) and 35% in a Swedish study (Henriksson, 2001)
- Current study found 27.9% of trauma deaths were potentially survivable similar to 28.5% of cases in a US study (Davis, 2014)
Strengths and limitations

Strengths:
- Novel research for NZ
- Population based
- Trained coder
- Aligned with methodology used by others

Limitations
- Limited to post-mortem results, known to under record spinal cord injury
- Only those cases with injuries able to be ISS scored included
- No contextual information available to be considered e.g. comorbidities, physiological status, length of time before found, if a multiple casualty scenario, weather, physical isolation, etc.
Conclusions

- **Preliminary results**
 - 694 survivable/potentially survivable deaths (~ 139/year)
 - Additional analyses will look at body regions injured and nature of injuries *e.g.* 80.6% of non-survivable injuries had a head injury *as a component*
 - Estimated average social cost $2.9B (~ $580m/year)
 - Continued primary prevention efforts required
 - Patterns and potential survivability of prehospital injury deaths combined with the geographic coverage of existing EMS can provide insights that can inform the optimisation of a mature emergency response system for NZ
Prevention is better than cure
Acknowledgements

• **Investigator team**
 • Prof Shanthi Ameratunga (Auckland)
 • Prof Papaarangi Reid (Auckland)
 • Prof Ian Civil (Auckland District Health Board)
 • Prof Charlie Branas (USA)
 • Bridget Dicker (St John)

• **Data/information** St John, Wellington Free Ambulance, Ministry of Health, Ian Wilmot Consulting, Siobhan Isles & Ian Civil

• **Funding:** Health Research Council of New Zealand project grant (HRC ref# 15/186).

• b.kool@Auckland.ac.nz